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Abstract— We study the inverse problem of reproducing
partially known second-order statistics of a linear time invariant
system by the least number of possible input disturbance chan-
nels. This can be formulated as a rank minimization problem,
and for its solution, we employ a convex relaxation based on the
nuclear norm. The resulting optimization problem can be cast
as a semi-definite program and solved efficiently using general-
purpose solvers for small- and medium-size problems. In this
paper, we focus on issues and techniques that are pertinent to
large-scale systems. We bring in a re-parameterization which
transforms the problem into a form suitable for the alternating
direction method of multipliers. Furthermore, we show that
each iteration of this algorithm amounts to solving a system of
linear equations, an eigenvalue decomposition, and a singular
value thresholding. An illustrative example is provided to
demonstrate the effectiveness of the developed approach.

Index Terms— Alternating direction method of multipliers,
convex optimization, low-rank approximation, nuclear norm
regularization, singular value thresholding, state covariances,
structured matrix completion problems.

I. INTRODUCTION

We consider the problem of reproducing partially known
second-order statistics using a linear time invariant (LTI)
system with a minimum number of input channels. The mo-
tivation for this inverse problem stems from applications in
which it is desired to reproduce state covariances generated
in experiments or simulations using linear systems driven by
stochastic disturbances. This completion of state covariances
is closely related to well-known matrix completion prob-
lems [1]–[4] with a Lyapunov equality constraint imposed
by the underlying linear dynamics.

The search for the least number of possible input dis-
turbance channels gives rise to a rank minimization prob-
lem. We employ a convex relaxation based on the nuclear
norm [5], [6]. The resulting optimization problem can be
cast as a semi-definite program (SDP) and solved efficiently
using general-purpose SDP solvers for problems of small
and medium size. To deal with large problems, we rely on
a re-parameterization that brings the optimization problem
into a form suitable for the alternating direction method
of multipliers (ADMM). Furthermore, we show that each
ADMM iteration amounts to solving a system of linear
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equations, an eigenvalue decomposition, and a singular value
thresholding.

The paper is organized as follows. We formulate the
minimum rank covariance completion problem and make
connections to well-known matrix completion problems in
Section II. We relax the rank using the nuclear norm and
provide a re-parameterization suitable for large problems in
Section III. We then cast the constrained convex optimization
problem into a form suitable for ADMM in Section IV. We
give an illustrative example to demonstrate the effectiveness
of the developed approach in Section V. We summarize our
contributions and discuss future directions in Section VI.

II. PROBLEM FORMULATION

Consider a stochastically forced LTI system

ẋ = Ax + B u (1)

where A ∈ Cn×n, B ∈ Cn×m, and u(t) ∈ Cm is a stationary
zero-mean stochastic process. For a Hurwitz matrix A and a
controllable pair (A,B), it was shown in [7] that the steady-
state covariance

X := lim
t→∞

E(x(t)x∗(t)),

with E(·) denoting the expectation operator, satisfies a con-
straint imposed by the underlying linear dynamics

AX + XA∗ = − (BH∗ +HB∗). (2)

More specifically, a positive semi-definite matrix X is quali-
fied to be the state covariance of the linear system (1) if and
only if equation (2) is solvable in terms of H ∈ Cn×m.

Our objective is to identify input statistics from partially
available state covariances. The motivation for this inverse
problem stems from applications in which it is desired to
reproduce second-order statistics (generated in experiments
or simulations) using an LTI system driven by stochastic
disturbances.

For a given set of N constraints on a state covariance
matrix

trace (TiX) = gi, i = 1, . . . , N, (3)

we are interested in finding B, H , and X = X∗ � 0 that
satisfy the Lyapunov equation (2) and the constraint (3).
Here, problem data is specified by (A, Ti, gi) where matrices
Ti relate X to sampled statistics gi.

The structure of the matrix B determines the way distur-
bance inputs enter into the state equation; in particular, the



dimension of B dictates the number of input channels. It is
thus of interest to seek a linear model with a small number
of inputs that is capable of reproducing available data. In this
case matrix B also becomes a design parameter. However,
since the product of B and H in (2) results in a difficult
non-convex equality constraint, we introduce new variable

Q := BH∗ + HB∗.

Since the rank of Q bounds the rank of BH∗, and hence the
number of input channels [8], we seek a matrix Q with the
minimum rank. Therefore, we consider the following rank
minimization problem

minimize
Q,X

rank (Q)

subject to AX + XA∗ + Q = 0

trace (TiX) = gi, i = 1, . . . , N

X � 0.

(4)

Note that the constraint set is convex because it is the
intersection of the positive semi-definite cone and the linear
subspace determined by the Lyapunov equation and trace
constraints. On the other hand, the rank in the objective
function is the source of non-convexity.

A. Connections to matrix completion problems

Matrix completion problems have received considerable
attention in recent years due to emerging applications, ex-
citing theoretical developments, and efficient optimization
algorithms [1]–[4], [6], [9]–[13]. It is therefore instructive
to provide connections and highlight differences between (4)
and the positive semi-definite matrix completion problem.

Consider the problem of recovering a positive semi-
definite matrix from a sample of its entries. This problem
can be expressed as

find X � 0

subject to Xjl = Mjl, (j, l) ∈ Ω

where Ω is the index set of known entries Mjl. The problem
of finding a minimum rank matrix that is consistent with the
observed data can be formulated as

minimize
X

rank (X)

subject to Xjl = Mjl, (j, l) ∈ Ω

X � 0.

(5)

Note that the rank minimization problem (4) with

A = − (1/2)I, Ti = el e
T
j

where ej is the jth element of the canonical basis of Rn,
simplifies to the standard matrix completion problem (5). In
other words, the rank minimization problem (4) encompasses
the following structured covariance completion problem

minimize
Q,X

rank (Q)

subject to AX + XA∗ + Q = 0

Xjl = Mjl, (j, l) ∈ Ω

X � 0.

(6)

It is worth mentioning that problem (4) also accommodates
the output covariance completion problem. Suppose that
instead of having access to some of the entries of the state
covariance matrix, we have a sample of entries of the output
covariance matrix

(CXC∗)jl = Mjl, (j, l) ∈ Ω

with C ∈ Cp×n denoting the output matrix. Since these
linear constraints can be written as

trace
(
C∗ele

T
j CX

)
= Mjl, (j, l) ∈ Ω,

we conclude that the structured output covariance comple-
tion problem

minimize
Q,X

rank (Q)

subject to AX + XA∗ + Q = 0

(CXC∗)jl = Mjl, (j, l) ∈ Ω

X � 0

(7)

is also a special case of (4) with

Ti = C∗ele
T
j C, gi = Mjl.

III. NUCLEAR NORM RELAXATION

In this section, we relax the rank with the nuclear norm to
obtain a convex optimization problem. For the relaxed con-
vex problem, we provide an SDP formulation. Furthermore,
we parameterize the constraint set and bring the relaxed
formulation into a form that is well-suited to large problems.

The nuclear norm, i.e., the sum of the singular values of
a matrix

‖Q‖∗ :=

n∑
i=1

σi(Q)

provides an effective surrogate for rank minimization prob-
lems [5], [6]. In contrast to the non-convex rank function, the
nuclear norm is convex and it is the best convex approxima-
tion of rank function over the set of matrices with spectral
norm no greater than one [6]. Thus, relaxation of rank to
nuclear norm in (4) yields a convex optimization problem

minimize
Q,X

‖Q‖∗
subject to AX + XA∗ + Q = 0

trace (TiX) = gi, i = 1, . . . , N

X � 0.

(MC)

A. SDP formulation

For a Hermitian matrix Q, the nuclear norm of Q can be
written as

‖Q‖∗ =

n∑
i=1

|λi(Q)|.

Therefore, by splitting Q into positive and negative semi-
definite parts

Q = Q+ − Q−, Q+ � 0, Q− � 0



it can be shown [5] that the matrix completion problem (MC)
is equivalent to the following semi-definite program

minimize
Q+, Q−, X

trace (Q+) + trace (Q−)

subject to AX + XA∗ + Q+ − Q− = 0

trace (TiX) = gi, i = 1, . . . , N

X � 0, Q+ � 0, Q− � 0.

When the number of states is n . 50, this SDP can
be solved using general-purpose SDP solvers. Customized
interior point method for unconstrained nuclear norm mini-
mization [9] can deal with matrices with a few hundreds of
rows and columns. However, the positive semi-definite con-
straint and the Lyapunov equality constraint prevent us from
employing this approach. We next provide an alternative
problem formulation that is well-suited to large problems.

B. Null space parameterization

We begin by parameterizing the null space of the linear
operator determined by trace constraints. This null space
parameterization will allow us to eliminate trace constraints
and the Lyapunov equation from (MC).

Since the set of trace constraints

trace (TiX) = gi, i = 1, . . . , N

defines a linear mapping

T (X) = g (8)

from the Hermitian matrix X to the vector g :=
[ g1 · · · gN ]

T , it follows that all solutions to (8) can be
parameterized using the null space of the linear operator T .
Specifically,

X = X0 +

q∑
j=1

zjXj (9)

where X0 = X∗0 is a particular solution of (8), zj’s are
real coefficients, and Xj = X∗j ’s are linearly independent
matrices that satisfy

trace (TiXj) = 0, i = 1, . . . , N, j = 1, . . . , q.

Here, q is the dimension of the null space of T .

Similarly, we parameterize Q by substituting (9) into the
Lyapunov equation in (MC)

Q = − (AX + XA∗) = Q0 +

q∑
j=1

zjQj

where

Q0 := − (AX0 + X0A
∗), Qj := − (AXj + XjA

∗).

Therefore, the above presented null space parameterization
can be used to recast the state covariance completion prob-

lem (MC) into

minimize
Q,X, z

‖Q‖∗

subject to Q = Q0 +

q∑
j=1

zjQj

X = X0 +

q∑
j=1

zjXj

X � 0.

(10)

Here, Qj and Xj are problem data and Q = Q∗, X = X∗,
and z are the optimization variables. Note that the vector z
couples linear constraints in (10). This particular structure
will be exploited in Section IV.

Remark 1: One approach to compute a solution X0 of (8)
is to solve the under-determined system of linear equations

[ vec (T1) · · · vec (TN ) ]
T

vec (X) = g

where vec (X) denotes the vectorization of the upper trian-
gular part (including the main diagonal) of the Hermitian
matrix X . The basis elements Xj’s of the null space of T
can be computed via the singular value decomposition of T .

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

We next employ the alternating direction method of mul-
tipliers (ADMM) to solve (10). This method has been em-
ployed effectively in low-rank matrix recovery [11], sparse
covariance selection [14], image denoising and magnetic
resonance imaging [15], sparse feedback synthesis [16], and
many other applications [17]. When applied to (10), we
will demonstrate that each ADMM iteration requires an
eigenvalue decomposition of X , a singular value thresholding
of Q, and the solution to a system of linear equations for z.

Note that problem (10) is not in a form suitable for
ADMM since it has three independent variables {Q, X , z}
and two coupling linear constraints. To put (10) into the so-
called two-block form suitable for ADMM, let us introduce

f(Q,X) := ‖Q‖∗ + φ(X), h(z) ≡ 0

where φ(X) is the indicator function

φ(X) =

{
0, X � 0
∞, otherwise.

Since f is a convex separable function of Q and X and
since h is a trivially convex function of z, the following
equivalent formulation to (10) is in the standard form suitable
for ADMM [17]

minimize
X,Q, z

f(Q,X) + h(z)

subject to
[
Q(z)
X (z)

]
−
[
Q
X

]
= 0

(11)

where

Q(z) := Q0 +

q∑
j=1

zjQj , X (z) := X0 +

q∑
j=1

zjXj .

We next form the augmented Lagrangian associated with



the constrained problem (11)

Lρ(Q,X, z, Y, Z) = ‖Q‖∗ + φ(X) + 〈Y,Q(z) − Q〉+

〈Z,X (z) − X〉 +
ρ

2
‖Q(z) − Q‖2F +

ρ

2
‖X (z) − X‖2F

where Y = Y ∗ and Z = Z∗ are Lagrange multipliers, ρ is a
positive scalar, 〈·, ·〉 is the inner product of two matrices, and
‖ · ‖F is the Frobenius norm. The ADMM algorithm uses a
sequence of iterations

(Q,X)k+1 := arg min
Q,X

Lρ(Q,X, zk, Y k, Zk) (12a)

zk+1 := arg min
z

Lρ(Qk+1, Xk+1, z, Y k, Zk) (12b)[
Y k+1

Zk+1

]
:=

[
Y k

Zk

]
+ ρ

[
Q(zk+1) − Qk+1

X (zk+1) − Xk+1

]
(12c)

to find the solution of (11). These iterations terminate when
the primal and dual residuals are sufficiently small

primal residues:

{
‖Q(zk+1)−Qk+1‖F ≤ ε1

‖X (zk+1)−Xk+1‖F ≤ ε2

dual residues:


‖Qk+1 −Qk‖F ≤ ε3

‖Xk+1 −Xk‖F ≤ ε4

‖zk+1 − zk‖2 ≤ ε5

where εi’s are determined by problem data; see [17, Section
3.3] for details.

A. Solution to the (Q,X)-minimization problem

For fixed {zk, Y k, Zk}, the minimization of the aug-
mented Lagrangian Lρ with respect to (Q,X) amounts to

minimize
Q,X

‖Q‖∗ + φ(X) +
ρ

2
‖Q − (Q(zk) +

1

ρ
Y k)‖2F

+
ρ

2
‖X − (X (zk) +

1

ρ
Zk)‖2F .

Separability of the objective function with respect to Q and
X results in the following two uncoupled problems

minimize
Q

‖Q‖∗ + (ρ/2)‖Q − (Q(zk) + (1/ρ)Y k)‖2F
(13)

and

minimize
X

φ(X) + (ρ/2)‖X − (X (zk) + (1/ρ)Zk)‖2F .
(14)

The solution to the Q-minimization problem (13) is given
by the singular value thresholding operator [18]. Specifi-
cally, we compute the singular value decomposition of the
symmetric matrix

Q(zk) + (1/ρ)Y k = U ΣU∗

and apply the soft-thresholding operator to the resulting
singular values

S1/ρ(Σ) = diag{(σi − 1/ρ)+}

where a+ := max{a, 0}. Then, the solution to the Q-
minimization problem (13) is determined by [18]

Qk+1 = U S1/ρ(Σ)U∗.

On the other hand, the solution of the X-minimization
problem (14) is determined by the projection of X (zk) +
(1/ρ)Zk onto the positive semi-definite cone. Specifically,
we compute the eigenvalue decomposition of the matrix

X (zk) + (1/ρ)Zk = V ΛV ∗

and truncate the negative eigenvalues

Λ+ = diag{(λi)+}

to obtain the solution

Xk+1 = V Λ+ V
∗.

B. Solution to the z-minimization problem

Problem (12b) is a convex quadratic program

minimize
z

ρ

2
‖Q(z) − Qk+1‖2F +

ρ

2
‖X (z) − Xk+1‖2F +

〈Y k,Q(z) − Qk+1〉 + 〈Zk,X (z) − Xk+1〉

that can be rewritten compactly as

minimize
z

(ρ/2) zTHz + (bk)T z.

Here, the Hessian H and the gradient bk are given by

Hij = trace (QiQj + XiXj)

bki = trace (Y kQi + ZkXi + ρQi(Q0 −Qk+1) +

ρXi(X0 −Xk+1)).

Therefore, this z-minimization problem (12b) amounts to
solving the system of linear equations

ρHz + bk = 0

whose solution can be computed efficiently using Cholesky
factorization and back-solve operations. Note that the Hes-
sian matrix H is independent of ADMM iterations. This im-
plies that we only need to compute the Cholesky factorization
of H once, and then save the Cholesky factor for the back-
solve operations in subsequent z-minimization steps.

C. Computational complexity

Since the Q-minimization problem amounts to a singular
value decomposition, it costs O(n3) operations, where n is
the number of states. Similarly, since the X-minimization
problem amounts to an eigenvalue decomposition, this step
also requires O(n3) operations. On the other hand, the
Cholesky factorization of H takes O(q3) operations and the
subsequent z-minimization step takes O(q2) operations for
the back-solve operations, where

q := n(n+ 1)/2 − N



is the dimension of the null space. Therefore, the total
computational cost is determined by

O(max{q3, kn3, kq2})

where k is the number of ADMM iterations.

Without exploiting sparsity in basis representation, the
memory requirements are O(q2) for the Cholesky factor of
H and O(qn2) for the basis of the null space. Note that for
the structured covariance completion problem (6), the basis
elements are sparse matrices that contain only single nonzero
entry.

V. AN EXAMPLE

Consider a mass-spring-damper system with 50 masses
subject to disturbances that are outputs of a low-pass filter
driven by white noise

low-pass filter: ẋf = −xf + d

u = xf

mass-spring-damper system: ẋ = Ax + B u

where d is a white stochastic disturbance with zero-mean
and unit variance. The state and the input matrices of the
mass-spring-damper system are

A =

[
O I
−K − 2K

]
, B =

[
O
I

]
where O and I are zero and identity matrices and K ∈
R50×50 is a symmetric tridiagonal Toeplitz matrix with 2
on the main diagonal and −1 on the first upper- and lower-
subdiagonal.

The steady-state covariance Σ of the cascade connection
is determined by the solution of the Lyapunov equation

AΣ + ΣA∗ + BB∗ = 0 (15)

where
A =

[
A B
O − I

]
, B =

[
B
I

]
and

Σ =

[
Σxx Σxxf

Σxfx Σxfxf

]
.

We partition the state covariance Σxx of the mass-spring-
damper system into 2 × 2 block matrices compatible with
the position and velocity of masses

Σxx =

[
Σpp Σpv
Σvp Σvv

]
.

The diagonals of Σpp, Σvv , and Σpv are assumed to be the
available data and hence

g =

 diag (Σpp)
diag (Σvv)
diag (Σpv)

 .
We are interested in completing the state covariance X that

are consistent with the diagonals of Σpp, Σvv , and Σpv . To
this end, we solve the covariance completion problem (MC).

(a) Xpp (b) Xvv

Fig. 1: The matrices Xpp and Xvv resulting from the
covariance completion problem (MC) for the mass-spring-
damper system. Sampled statistics in (MC) are determined
by the diagonals of the matrices Σpp, Σvv , and Σpv .

(a) Σpp (b) Σvv

Fig. 2: Position and velocity covariances, Σpp and Σvv ,
resulting from the solution Σ to the Lyapunov equation (15)
for the mass-spring-damper system.

Figure 1 shows the completed position and velocity covari-
ances Xpp and Xvv . We observe their close correspondence
to the true covariance matrices Σpp and Σvv shown in Fig. 2.
In this example, it turns out that both Σpv and Xpv are zero
matrices.

We next examine the singular values of Q that results from
solving covariance completion problem (MC). As shown in
Fig. 3, there are seven relatively large singular values and
the rest of singular values are much smaller. On the other
hand, Fig. 4 demonstrates that there is no clear-cut in the
singular values of Q̄ with

Q̄ = − (AΣxx + ΣxxA
∗).

The approximately low-rank feature of the solution Q il-
lustrates the utility of the covariance matrix completion
problem (MC).

VI. CONCLUDING REMARKS

We study the inverse problem of reproducing partially
known second-order statistics using an LTI system with a
minimum number of input channels. We formulate a rank
minimization problem that encompasses the positive semi-
definite matrix completion problem. We employ the nuclear
norm relaxation and show that the resulting optimization
problem can be formulated as an SDP. Furthermore, we
provide a null space parameterization that allows us to cast
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Fig. 3: Singular values of the approximately low-rank solu-
tion Q to the covariance matrix completion problem (MC)
for the mass-spring-damper system.
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Fig. 4: Singular values of Q̄ = −(AΣxx + ΣxxA
∗) for the

mass-spring-damper system.

the problem into a form suitable for the ADMM algorithm.
We show that each ADMM iteration amounts to comput-
ing an eigenvalue and a singular value decomposition and
solving a system of linear equations. An illustrative example
is provided to demonstrate the utility of the developed
approach.

A. Future directions

Suppose that Q is decomposed into Q = S + S∗. It is
shown in [8] that the number of positive and negative eigen-
values of Q is bounded by the rank of S. In particular, the
maximum of the number of positive and negative eigenvalues
of Q coincides with the rank of S; see [8]. In view of this, it
is also of interest to consider the following rank minimization

problem

minimize
Q+, Q−, X

max {rank (Q+) , rank (Q−)}

subject to AX + XA∗ + Q+ − Q− = 0

trace (TiX) = gi, i = 1, . . . , N

X � 0, Q+ � 0, Q− � 0.

We intend to develop efficient algorithms for the convex
relaxation of this problem in future work.
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